If the product of the perpendicular distances from any point on the hyperbola $\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\,\, = \,1$ of eccentricity $e =\sqrt 3 \,$ from its asymptotes is equal to $6$, then the length of the transverse axis of the hyperbola is
$3$
$6$
$8$
$12$
Let a line $L_{1}$ be tangent to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$ and let $L_{2}$ be the line passing through the origin and perpendicular to $L _{1}$. If the locus of the point of intersection of $L_{1}$ and $L_{2}$ is $\left(x^{2}+y^{2}\right)^{2}=$ $\alpha x^{2}+\beta y^{2}$, then $\alpha+\beta$ is equal to
If $(a -2)x^2 + ay^2 = 4$ represents rectangular hyperbola, then $a$ equals :-
The line $y = mx + c$ touches the curve $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, if
$P$ is a point on the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}}$ $= 1, N $ is the foot of the perpendicular from $P$ on the transverse axis. The tangent to the hyperbola at $P$ meets the transverse axis at $ T$ . If $O$ is the centre of the hyperbola, the $OT. ON$ is equal to :
Let the eccentricity of the hyperbola $H : \frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=1$ be $\sqrt{\frac{5}{2}}$ and length of its latus rectum be $6 \sqrt{2}$, If $y =2 x + c$ is a tangent to the hyperbola $H$, then the value of $c ^{2}$ is equal to